
www.ubuntu.com© Copyright Canonical 2017

WHITE PAPER

For CTO’s: the no-nonsense way to
accelerate your business with containers
February 2017

Contents

EXECUTIVE OVERVIEW 03

THE BACKGROUND OF CONTAINERS 05

 THE HISTORICAL CONTEXT 05

 CONTAINERS AND APPLICATIONS TODAY 05

 WHAT EXACTLY IS A CONTAINER? 07

 PROCESS VS. MACHINE CONTAINERS 11

CONTAINERS ON LINUX 13

DOCKER AND PROCESS CONTAINERS 15

LXD AND MACHINE CONTAINERS 17

CONTAINERS AND THE NEED FOR ORCHESTRATION SOFTWARE 19

HOW CANONICAL HELPS 20

NEXT STEPS 21

GLOSSARY 22

 03

Executive overview

Container technology has brought about a step-change in virtualisation
technology. Organisations implementing containers see considerable
opportunities to improve agility, efficiency, speed, and manageability within
their IT environments. Containers promise to improve datacenter efficiency
and performance without having to make additional investments in hardware
or infrastructure.

This white paper explains the background and timeline to the development
of containers, and the most recent technology that has led to the proliferation
of containers on the Linux platform. It explains the differences between and
advantages and disadvantages of process containers and machine containers.
It examines the two main software tools (Docker and LXD) that are used
to manipulate containers. Lastly, a glossary at the end of the paper provides
a convenient reference point for the technical terms used within the paper.

Traditional hypervisors provide the most common form of virtualisation,
and virtual machines running on such hypervisors are pervasive in nearly
every datacenter.

Containers offer a new form of virtualisation, providing almost equivalent levels
of resource isolation as a traditional hypervisor. However, containers are lower
overhead both in terms of lower memory footprint and higher efficiency. This
means higher density can be achieved – simply put, you can get more for the
same hardware.

Containers come in two varieties: process containers and machine containers.
Machine containers act very much like lightweight physical or virtual machines,
having their own full operating system image, but sharing the same kernel as
the host machine; they share familiar tooling and workflow and are simple to
adopt. Process containers are still more lightweight, only containing the binaries
or processes for the specific application they run. As such, they require changes
in workflow, which may carry associated costs. However, these same changes
in workflow provide other advantages, such as the ability to change easily to
immutable infrastructure, which itself brings benefits in terms of creating
large, manageable, scalable deployments.

 04

Large deployments of containers bring challenges associated with network
management and service discovery. If each container carries its own IP address
(which is the simple route to avoiding service discovery problems), IP address
management and management of overlay networking become significant issues
in a large estate. Technologies such as fan networking, popularised by Canonical,
can significantly alleviate such issues.

The attraction of containers is not just static efficiency. Containers are also
quicker to spin up and take down. This facilitates a more scalable architecture
where applications are divided up into microservices where each such service
can be developed, deployed, and scaled independently. Such an architecture
provides greater agility and business responsiveness, as well as lower total cost
of ownership and greater resilience; however, it requires container orchestration
software in order to take full advantage.

Containers thus present a new opportunity for the CTO to reduce cost, to
increase agility, and to move to a more scalable and resilient architecture.
However, CTOs must also recognize that some use cases are better suited to
containers than others, that grasping this opportunity requires a recognition
of transition costs, and that in some cases this change in infrastructure also
brings some challenges. These concepts are more fully explained within the
body of this white paper.

 05

The background of containers

THE HISTORICAL CONTEXT

Virtualisation first arrived on the Linux operating system in the form of
hypervisors such as Xen and KVM (kernel virtual machines) - referred to in
this paper as ‘traditional hypervisors’. Each segment of the host machine
being known as a ‘virtual machine’, running its own operating system kernel.

Those who ran applications that were particularly cost sensitive (the first
example being consumer web hosting) attempted to squeeze as much out
of a given piece of hardware as possible. However, high densities were difficult
to achieve with existing forms of virtualisation, especially when the application
was small in size compared to the kernel, as much of the system’s memory was
taken up with multiple copies of kernel – often the same kernel. Hence in
such high density applications, machines were instead divided using cruder
technologies (for instance ‘chroot jails’) despite the fact that this provided
imperfect workload isolation and carried security implications. In 2001,
operating system virtualisation (in the form of Linux vServer) was introduced
as a series of kernel patches.

This was an early form of container virtualisation. Rather than running one copy
of the kernel per tenant, the kernel itself recognized separate groupings of
processes as belonging to different tenants, each sharing the same kernel, but
each being isolated from each other. Moreover, borrowing ideas from FreeBSD
jails and Solaris zones, formed the basis of Google’s Process Containers, which
eventually became cgroups and Linux namespaces, the basis of modern Linux
containers, with the user-space program ‘LXC’ was introduced by IBM and
Canonical to manage them.

CONTAINERS AND APPLICATIONS TODAY

As containers do not contain their own kernel, they are typically quick to
deploy and remove. They can take two forms: process containers (a container
containing only a single application), or machine containers (a container with its
own user-space operating system, but sharing the kernel of a host). In modern
usage, the term ‘container’ refers not just to the runtime isolation mechanism,
but also to the image deployed with it; these two forms of container differ in
the type of image deployed.

In the meantime, applications themselves have changed. Rather than single
monolithic processes, they are now composed of multiple components. Each
component may have many instances running at once in order to scale, and
each component needs to communicate with other components. This division
of the application into many component elements is often referred to as
‘microservices’ (see glossary).

 06

The need for rapid deployment, both to scale and to allow swift, simple
upgrades to individual components in keeping with the trend towards
‘DevOps’ and agile development methodologies. Both favour the use of
containers, as each application is small compared to the operating system
(which would thus constitute a significant overhead in traditional hypervisor-
based virtualisation) and upgrades can be performed without the overhead
of an operating system boot.

These trends have also brought a growing need to track, and to reproducibly
create and destroy, the increasing number of containers, and the container
management tools address this need. Docker manages process containers on
a single host and provides the de-facto standard for packaging files within a
container image. Similarly, LXD provides a means of running machine containers
on a single host. Technologies such as Docker Swarm and Kubernetes allow the
management of containers across multiple hosts. These technologies represent
the current status of container technology.

Date

1982

2000

2001

2004

2005

2006

2007

2008

2010

2013

2014

2015

2016

Event

Addition to BSD of chroot system call, permitting process level isolation

Introduction of FreeBSD jails and SWSoft’s (later Parallels) Virtuozzo, file system
isolation, memory isolation, network isolation and root privilege isolation

Linux VServer patches bring rudimentary containers to Linux

Sun Microsystems (later Oracle) introduces Solaris Zones, bringing containers
to Solaris

Parallels releases OpenVZ kernel patches for Linux, including some of its
Virtuozzo container technology

Google develops ‘Process Containers’ for Linux

Control Groups and Namespaces merged into Linux kernel (Process Containers
renamed)

LXC userland tooling for Linux Containers released by IBM

Ubuntu booting in an LXC machine container, Canonical assumes stewardship
of LXC

Docker released

LXC 1.0 (stable version with long term support) released

LXD released by Canonical

Canonical’s Distribution of Kubernetes

https://www.ubuntu.com/cloud/kubernetes

 07

1.

Without virtualisation or containers

Traditional hypervisor-based virtualisation allows guest kernels to run on
top of (or alongside) a host kernel. Each of these guest kernels runs its own
operating system instance. These traditional hypervisors provide optimum
isolation as well as the ability to run a wide range of operating systems and
kernels simultaneously on the same hardware. However, they come with
a number of disadvantages:

 Each kernel and operating system takes a while to boot.

 Each kernel takes up its own permanent memory footprint and carries a CPU
overhead, so the overhead of virtualisation is quite large.

 I/O is less efficient. In order for the guest application to perform I/O, it needs
first to call the guest kernel, which makes a request to what it believes is the
hardware. Which is in turn emulated by the hypervisor, and passed to the host
operating system, and finally to the hardware. The response is then passed the
same circuitous route; although paravirtualised drivers have been introduced
to remove the emulation overhead, two kernels are still involved, and thus
there is still performance degradation, both in terms of overhead and latency.

WHAT EXACTLY IS A CONTAINER?

Containers are a technology that allows the user to divide up a machine so
that it can run more than one application (in the case of process containers)
or operating system instance (in the case of machine containers) on the
same kernel and hardware, and in so doing maintain isolation between
these workloads.

Before containers came to prime-time, two other techniques were used:
multitasking and traditional hypervisor-based virtualisation.

Multitasking allows multiple applications to run on the same operating
system, kernel, and hardware; however, it provides little isolation between
different applications. For instance a runaway application might exhaust
memory, I/O capability or disk space. A malicious or buggy application might
provide access to the operating system and hence the data of every application.

Hardware / Virtual machine / Machine containter

Host Kernel

Host OS

App A App B App C App D App E App F App G App H

2.

3.

 08

Hypervisor virtualisation overhead of disk write

 Resources are not allocated on a fine-grained basis. As a simple example, each
virtual machine has a memory size specified on creation, so memory left idle
by one virtual machine is not in general available to another. Technologies
such as ‘ballooning’ can alleviate the problem, resource allocation is
necessarily less efficient.

 The maintenance load of keeping up to date one kernel per virtual machine (as
is necessary under traditional hypervisor-based virtualisation) is significantly
greater than one kernel per host (as is the case under container-based
virtualisation), and the resultant downtime with traditional hypervisor-based
virtualisation is also correspondingly greater.

Hypervisor virtualisation

Hardware / Virtual machine / Machine container

Host Kernel

Hypervisor

Guest Kernel

Guest OS

Application

VM

Host OS

SATA/SCSI driver

Disk

SATA/SCSI driver

SATA/SCSI emulator

Hardware / Virtual machine / Machine container

Host Kernel

Hypervisor

Guest Kernel

Guest OS

VM

Host OS

App A App B

Guest Kernel

Guest OS

VM

App C App D

Guest Kernel

Guest OS

VM

App E App F

Guest Kernel

Guest OS

VM

App G App H

4.

5.

 09

Machine containers overhead of disk write

The containers provide isolation that is almost as good as a traditional
hypervisor; in fact the isolation is more flexible as containers can (for instance)
share some resources but not others. Boot is faster as there is no kernel to start
up, and (in the case of process containers) no operating system to start – in fact,
even machine containers tend to carry lightweight operating systems with
sub-second boot times. And resource allocation via cgroups is fine-grained,
being handled by the host kernel, allowing the effective per-container quality
of service (QoS) metrics and additional efficiency driven by more flexibility
in job scheduling. For instance, in Google’s Borg container orchestration system,
long running compute-intensive batch jobs are typically run in containers
alongside more latency-sensitive user-facing applications.

The latter typically reserve more resources than they need on a continuous
basis to satisfy the latency requirements in the event of spikes in load or
diminution of availability of some cluster members. The batch jobs are able
to make use of this unused capacity, subject to preemption by the user-facing
applications. cgroups also provides accurate measurement of consumption of
these resources, allowing for development of tools such as Google’s cAdvisor
as well as intelligent autoscaling.

Host OS

LXD

Guest OS

Application

Machine container

Hardware / Virtual machine / Machine container

Host Kernel

Disk

SATA/SCSI driver

Containers to some extent provide the best of both worlds. A single kernel
handles logically separate instances of applications (process containers)
or operating systems (machine containers). I/O thus passes directly from
the application to the host kernel, and to the hardware, and therefore
performance is the same as with native applications, and latency is minimized.

 10

However, there are disadvantages of containers compared to traditional
hypervisor-based virtualisation that include:

 Guests are limited to those that can use the same kernel: you cannot directly
run a Windows OS within a Linux container

 There is arguably additional isolation provided by a traditional hypervisor
that is not available to containers, meaning the ‘noisy neighbour’ problem is
potentially more significant on containers than under a traditional hypervisor.
However, it should be noted that this difference has been minimized in recent
years by advances in kernel support for containers. For example, there are
resources like level 3 processor cache and memory bandwidth which neither
virtualisation technology can arbitrate. Additional isolation provided by a
traditional hypervisor can be argued to make traditional hypervisor-based
virtualisation more secure than containers, though this is in essence a
question of whether the traditional hypervisor’s defences are better than the
kernel’s defences. Fourthly, there are disadvantages of running a single kernel
– an ‘all eggs in one basket’ argument. If that kernel crashes or is exploited,
perhaps due to a vulnerability within an application which itself is insecure,
the whole machine is compromised; and upgrading that kernel is thus
arguably more problematic (as more depends on it) than upgrading kernels
in a traditional hypervisor based environment

 Techniques such as live migration of containers are in their infancy compared
to the equivalent on traditional hypervisors

It is worth noting that virtualisation techniques can be nested. For instance,
traditional hypervisors can be run inside hypervisors or containers, and
containers can be run inside traditional hypervisors or containers. This, at
the expense of some complexity, provides further flexibility in the resource
isolation and performance trade-off.

 11

PROCESS VS. MACHINE CONTAINERS

We have briefly distinguished above between process containers and machine
containers, saying that a process container contains only a single application,
but a machine container contains one or more applications, and its own
operating system. In either case, they share a kernel with the host. To drill
down a little more into the differences, we need to understand a little more
about how applications work in a Linux environment, and what exactly we
mean by ‘Operating System’.

In a process container environment such as Docker, containers are designed to
be very small. They contain only the binaries for a single application. Often these
are statically linked, or contain a minimal subset of libraries necessary for that
application alone. For instance, they need not contain a shell, or a traditional
‘init’ process. The disk space required for a process container can be very small
indeed (perhaps as little as a couple of megabytes). Technologies such as Docker
are often able to ‘compose’ such containers (overlay one image upon another)
so an application can be built upon a base template. Read-write storage is
normally separated from the image. As a result, these tend to be ideal for
building small immutable services. Of course a real world deployment may
contain tens or hundreds of such services.

Hardware / Virtual machine / Machine containter

Host Kernel

Host OS

DockerProcess
container

App
A

Process
container

App
B

Process
container

App
C

Process
container

App
D

Process
container

App
E

Process
container

App
F

Process
container

App
G

Process
container

App
H

Process containers

A machine container environment, such as one provided by LXD, looks far more
similar to a virtual machine. The container will appear to have its own disk image,
often containing a cut down version of an operating system. It will have its own
init process, and may run a limited number of daemons. Normally it would also
contain a shell. Programs are installed in the manner that the guest operating
system would normally expect (for instance using ‘apt-get’ on an Ubuntu
system). LXD thus functions similarly to a traditional hypervisor. The containers
are normally stateful, i.e. they provide mutable configuration, though copy-on-
write technologies allow them to be reset easily to their initial configuration.
Some sources refer to machine containers as ‘system containers’.

 12

Machine contaiers

We can see from the above that we have used ‘operating system’ to mean
the user-space programs that surround the kernel that do not form part of
the application itself. The fact that machine containers each have their own
‘operating system’ does not mean they each have a full running copy of Linux
or their own kernel. Rather they run a few lightweight daemons and have a
number of files necessary to provide a separate ‘OS within an OS’.

There is a third route for deployment of containers. This is to utilize the ability
of containers to nest, and to run process containers within machine containers
– for instance to run Docker containers within LXD containers. As containers
are so lightweight, this mixed container environment is an eminently practical
proposition, and provides an excellent way to manage Docker hosts.

Hardware / Virtual machine / Machine containter

Host Kernel

Host OS

Machine container

Guest OS

App A App B App C App D App E App F App G App H

Machine container

Guest OS

Machine container

Guest OS

Machine container

Guest OS

LXD

Hardware / Virtual machine / Machine container

Host Kernel

Host OS

Machine container Machine container

Process
 container

Process
 container

Process
 container

Guest OS

App A App B App
C

App
D

App
E

D
oc

ke
r

LXD

Guest OS

Machine container

Process
 container

Process
 container

Process
 container

App
F

App
G

App
H

D
oc

ke
r

Guest OS

Mixed containers

 13

Containers on Linux and LXC

Containers on Linux
The terminology surrounding containers on Linux can be confusing, in part
because the names of various components have changed, some projects have
morphed into other projects, and occasionally the same name has been used
for more than one component. This section sets out the current state of play.

Containers on Linux and LXC

At the bottom of the stack is the Linux kernel. Perhaps surprisingly, the
Linux kernel does not itself have a concept of ‘containers’ per-se; rather the
functionality of containers is provided by three kernel concepts: cgroups
(control groups), Linux namespaces, and the kernel security infrastructure.

Control groups limit and account for different types of resource usage (CPU,
memory, disk I/O, network I/O and so forth) across a collection of different
processes; they also provide prioritization of resource usage, and control
via checkpointing.

Linux namespaces provide ways to segregate various types of Linux resources
into different groups, for instance network namespaces permit different groups
of processes to have completely independent views of the Linux networking
stack. The other resource types that can be segregated include the process ID
space, the mounted filesystems, the filesystem attributes, the IPC space, and
the System V semaphore space. If all spaces are segregated, the segregated
processes have no operating system attributes in common with those that
launched them.

Hardware / Virtual machine / Machine containter

Host Kernel

Namespaces CGroups Security

libcontainerliblxc

lxc-command line LXD Docker

 14

So a container in kernel terms is a tree of processes that is segregated from the
tree of processes that launched it, and normally that segregation applies to all
the resources.

But, segregation is not sufficient for isolation. To fully isolate a container it
must not only be unable to ‘see’ into other containers, but it must also have its
resource usage controlled. For instance, it should not be able to hog memory or
I/O bandwidth that other containers may need. To achieve this, the Linux kernel
uses cgroups to protect one container from resource starvation or contention
caused by another container (whether that originates from a runaway process
or a denial of service attack), and thereby provide QoS guarantees.

Lastly, the kernel provides a level of security to containers via Apparmor,
SELinux, kernel capabilities and seccomp. These prevent, amongst other things,
a process running as root in a container having full access to the system (for
instance to hardware), and aid in ensuring processes cannot escape the
container in which they run. Containers thus offer two complementary forms
of access control. Firstly, discretionary access control (DAC) mediates access to
resources based on user-applied policies, so that individual containers cannot
interfere with each other, and can be run by non-root users securely. Secondly
mandatory access control (MAC) ensures that neither the container code itself
nor the code run within the containers has a greater degree of access than the
process itself requires, so the privileges granted to rogue or compromised
process are minimised.

Above the kernel lies the user-space toolset for manipulating containers, the
most popular of which is LXC. This itself is divided into a number of parts: a
library called liblxc which does all the heavy lifting, language bindings for that
library, a set of command line tools to manipulate containers at a low level,
and a set of standard container templates.

It is possible to use LXC containers directly, but they are unlikely to have much
practical application as the interface is very low level. Hence most users abstract
them further, using programs such as Docker to build process containers, or LXD
to build machine containers.

 15

Docker and process containers

Docker is an open-source project that permits the user to automate deployment
of applications inside process containers. It permits a small subset of a filing
system (just those files necessary for an application to run) to be built into a
template, and then allows this to be deployed, repeatedly, into a lightweight
container. As such the application is packaged to be separate from the
operating system on which it is run. By using only static libraries (or libraries
built into the container image), a container built on one version of Ubuntu can
run on a host running another; a container built on RHEL (for instance) could
even be run on Ubuntu.

Docker follows the principle of immutable infrastructure. When launched, each
container looks exactly like its template, so if a container is restarted all changes
previously made are lost. This ensures that a given container launches the same
each time, and avoids configuration drift where updates to a template and a
running machine get out of sync. The recommended way to update a container
is simply to destroy it and restart it with a new image. Of course, it is necessary
to store state somewhere – for instance a database needs to store its data
somewhere. Docker provides ‘volumes’ for this purpose. Volumes are external
containers that have data and no code, which are bound to the template
at runtime to create the running containerized application. This move to
immutable infrastructure and configuration can represent a significant
change of working practices (and thus an obstacle to adoption) but ultimately
is a powerful weapon in simplifying management of large container estates,
particularly when combined with container orchestration.

Docker uses a plain text configuration file (called a Dockerfile) in order to
describe what goes into a container, and permits composing of existing
templates and new files to produce new templates. In this way existing
templates can be built upon and modified. Underlying this (and the
immutability described above) is Docker’s use of copy-on-write filesystems.
Cut down versions of various distributions (including Ubuntu, Centos, and
CoreOS) are provided as base templates, but need not necessarily be used.
The built templates, in the form of images, can be uploaded and shared,
and thus can be downloaded from a public or private image repository.

 16

Docker has an unusual way of dealing with networking. Each container is not
a full-blown independent operating system image, and thus does not necessarily
have its own IP address. Rather it runs one or more processes, each of which
typically will be listening on one port. The Dockerfile can therefore describe
which of these ports need to be ‘exposed’, which in practice means mapped
by port translation to a port on the host. For system administrators, this change
in technique may require significant acclimatisation. Newer versions of Docker
permit containers to have their own IP addresses, and have network interfaces
mapped to bridges or overlay networks.

Docker previously used LXC to build its containers, but now by default uses
libcontainer, which provides similar functionality.

Docker has a significant ecosystem of other tools into which it is integrated.
For instance, it forms the basis of container management in Kubernetes and
is integrated into the Cloud Foundry PaaS. It also has integrations with
conventional configuration management tools such as Ansible, CFEngine,
Chef, Puppet, and Salt, and with various cloud platforms such as AWS, GCE,
Azure and OpenStack.

Alternatives to Docker exist, primarily rkt (pronounced ‘rocket’), an open-
source rival to Docker whose development is led by CoreOS; it provides
broadly similar functionality.

 17

LXD and machine containers

LXD is an open-source tool that provides a means to manage machine
containers. These act far more like virtual machines on a traditional hypervisor
than the process containers managed by Docker, which has led to LXD being
described by Canonical as a “pure container hypervisor”.

LXD is made up of three components. Firstly, a system-wide daemon (itself
called ‘lxd’) performs all the heavy lifting. It provides a REST API for local
usage, which can also be exported over the network if desired. This daemon
communicates with liblxc to create the containers themselves. Secondly a
command line tool (called ‘lxc’, but used to manipulate LXD containers not
LXC containers) communicates with the daemon, either on the same host or
over the network, via the REST API. Thirdly, a plugin to OpenStack (Nova LXD)
allows OpenStack to use LXD as a hypervisor, so that OpenStack can create
instances on LXD in the same way that it would normally create virtual
machines running on a traditional hypervisor such as KVM.

Security has been a key principle of LXD from the design stage. It creates
unprivileged containers by default (meaning non-root users can launch
containers). Resource constraints for containers were built in from the start
rather than as an afterthought. It thus provides a simple way of creating
machine containers with excellent isolation from the rest of the system.

By providing operation over the network as well as locally, containers can be
created on remote systems through the same command line prompt as is used
to create containers on the developer’s own laptop. This allows for simple
scalability and management of containers over multiple hosts.

LXD is designed to be an intuitive system, having a clean API and command line.
It is thus easy to get going, and will be familiar to those who have come from
a virtual machine environment.

LXD containers are image-based, meaning that each container has a full filing
system, rather than a composition of templates as with process containers. This
means existing trusted image sources can be used, and one can be share those
image repositories used for traditional hypervisor-based virtual machines.
This makes migration between hypervisor-based environments easy.

 18

LXD also provides support for live-migration, so that if a host node needs
maintenance, the container can be migrated elsewhere to ensure continuity
of service. Again, in this way it is similar to traditional hypervisor-based virtual
machines. Various other features familiar to traditional hypervisor users are
also available, such as snapshots and device passthrough.

As LXD containers are fully isolated containers, they have networking that
appears very similar to virtual machine based networking. Each container has
its own IP address (or IP addresses), and the container’s virtual Ethernet device
can appear on a bridge in the host. This makes networking no different to that
of virtual machines on a traditional hypervisor, and avoids the complexity of
port mapping and exposure. It does however mean that IP address management
becomes more complex, and that it is necessary to protect (via packet filters
or otherwise) machine containers in the same manner that one would need
to protect virtual machines.

As set out above, it is possible to nest containers within machine containers,
so one can run Docker within a LXD container, or even LXD containers within
a LXD container.

 19

Containers and the need
for orchestration software

The need for business agility has led to commercial pressure for more frequent
deployment of software. In order to support this, new software development
techniques (broadly classed as ‘agile’) and new operational cultures (such as
‘DevOps’) have taken hold, allowing for increased frequency of deployment
changes.

In order to support such rapid change cycles, applications increasingly tend
to be built from existing components, be they re-using in-house technology
or (more commonly) utilizing open-source elements. Rather than a monolithic
application, a modern application consists of multiple components, many being
open source elements running unchanged bar configuration (for instance
databases, web-servers, message queues and so forth), with a smaller number
being written in-house (for instance elements of business logic). The logical
conclusion of this is trend is a situation in which the application is composed
entirely of microservices, small independently deployable services
communicating locally over a network.

Containers provide an ideal vehicle for such components due to their low
overhead and speed of deployment. They also permit efficient horizontal scaling
by deployment of multiple identical containers of the relevant component each
sharing the same image. Modern applications thus might be built from hundreds
or even thousands of containers, potentially with complex interdependencies.
How can such containers be deployed in a reliable and reproducible manner?
If a given container ceases to function, how can it automatically be replaced?
And if an application needs to scale, how can the correct component to scale be
identified and have its array of containers expanded? These are issues addressed
by container orchestration software.

 20

How Canonical helps

Canonical’s Ubuntu Linux distribution allows organisations direct access to all
significant Linux container technology. Ubuntu brings variety, velocity and
quality: variety meaning a wide selection of container technology from which
your organisation can select the most suitable choice; velocity meaning
timeliness of delivery with a release cadence that ensures the most up-to-date
versions of container software are available to you through our predictable
release cadence; and quality meaning a keen focus on usability, compatibility
and interoperability.

In conjunction with Google, Canonical has released its own distribution of
Kubernetes - The Canonical Distribution of Kubernetes (CDK). CDK provides a
‘pure K8s’ experience, tested across a wide range of clouds and integrated with
modern metrics and monitoring. Further, CDK works across all major public
clouds and private infrastructure, enabling teams to operate Kubernetes
clusters on demand, anywhere.

Canonical is helping many companies to get the most out of containers. From
creating distributed applications and Microservices for Platform as a Service
(PaaS) environments, Batch and ETL (extract, transform, load) jobs within the
financial services industry, and improving DevOps efficiency through continuous
integration and deployment.

 21

Next steps

Containers offer a new form of virtualisation, with lower overhead than
traditional hypervisors both in terms of lower memory footprint and higher
efficiency. This allows organisations to achieve higher density, and run the same
compute load for less money. Machine containers provide a simple means to
garner this cost advantage for Linux-on-Linux workloads without application
redesign, whereas process containers allow additional opportunity to increase
agility and to move to a more scalable and resilient architecture.

To discover how Canonical can help you take advantage of containers, we
invite you to test-drive the Canonical Distribution of Kubernetes and LXD
containers using Conjure-up. This pure upstream distribution of Kubernetes is
designed to be easily deployable to public clouds, on-premise, bare metal, and
developer laptops. During the installation, conjure-up will ask you what cloud
you want to deploy on and prompt you for the proper credentials. If you’re
deploying to local containers (LXD) see these instructions for localhost-
specific considerations.

For production grade deployments and cluster lifecycle management
it is recommended to read the full Canonical Distribution of Kubernetes
documentation.

Home page: jujucharms.com/canonical-kubernetes/
Source code: github.com/juju-solutions/bundle-canonical-kubernetes

If you want to learn more about how Canonical can help to develop and
deploy your container strategy, please call +1 781 761 9427 (Americas),
+44 207 093 5161 (Rest of World) or contact us online.

https://www.ubuntu.com/cloud/kubernetes
https://kubernetes.io/docs/getting-started-guides/ubuntu/local/
https://kubernetes.io/docs/getting-started-guides/ubuntu/
https://kubernetes.io/docs/getting-started-guides/ubuntu/
http://jujucharms.com/canonical-kubernetes/
https://github.com/juju-solutions/bundle-canonical-kubernetes
https://www.ubuntu.com/cloud/contact-us

 22

Agile Software
Development

Ansible

AppArmor

Application

Application container

ARP

AWS (or “Amazon
Web Services”)

Azure

Ballooning

Borg

cAdvisor

CentOS

Ceph

cgroups (or Control
Groups)

Chef

chroot

Cloud Foundry

A set of concepts, practices and principles for the development of
software under which both requirements and the software that meets
them evolve during the development life-cycle by processes of
collaboration, as opposed to being defined at milestones within it.

An open-source configuration management utility primarily developed
by Red Hat.

A Linux kernel security module allowing restriction of the capabilities
of a process based on a profile that is distributed with the application
containing the process.

A computer program or set of computer programs designed to
perform a particular activity or set of activities.

Occasionally used as a synonym for ‘process container’.

Address Resolution Protocol, a protocol translating IP addresses (layer
3 addresses) into MAC addresses (layer 2 address).

A suite of cloud computing services offered by Amazon, including EC2
(or “Elastic Cloud Compute”), an IaaS service.

A suite of cloud computing services offered by Microsoft.

A technique within hypervisor-based virtualisation where memory
pages not used by the guest operating system can be returned to the
host (or other guests).

A proprietary container orchestration system produced and used
internally by Google, which is the predecessor to Kubernetes.

An open-source tool produced by Google that allows users to
introspect the performance and resource usage of their containers.

An open source community-supported Linux distribution aiming for
functional compatibility with RHEL.

An open-source a distributed block store, object store and file system
primarily developed by Red Hat.

A facility provided by the Linux Kernel that allows limitation and
accounting of usage of various resources (including CPU, disk I/O and
network I/O) across groups of different processes, and prioritization
between these groups of processes.

An open-source configuration management utility primarily developed
by the eponymous company named Chef.

A system call in UNIX operating systems that changes the root
directory to an alternate point in the filesystem hierarchy, thus
providing a view of a subset of the filesystem as opposed to the whole.

An open-source Platform-as-a-Service software suite overseen by the
Cloud Foundry Foundation. The new scheduler (Diego) permits general
container workloads. An enterprise edition is distributed by Pivotal
and others.

Glossary

 23

Compose (as “
Docker Compose”)

Container

Copy-on-write

CoreOS

Device passthrough

DevOps

Diego

Discretionary access
control (DAC)

DNS (or “Domain
Name System”)

Docker

Dockerfile

EBS (or “Elastic
Block Store”)

etcd

Fan networking

FreeBSD jail

GCE (or “Google
Compute Engine”)

Guest

An open-source tool for defining and running multi-container Docker
applications.

A virtualisation method whereby the host operating system permits
multiple isolated guest environments (“containers”) that share the
same kernel (in vthe case of system containers) or operating system (in
the case of application containers).

A technology whereby a copy of resource is made in a delayed manner.
Rather than copying the resource immediately, the resource is marked
as copied, and when either the copy or (on occasion) the original is
written to, a copy of the written area is made, meaning that only the
differences are recorded.

An open source lightweight Linux distribution optimised for container
usage distributed by the eponymous company CoreOS.

A technique allowing virtual machine guests direct access to hardware
that would otherwise be managed by the host.

A group of concepts and practices that emphasise integration of and
collaboration between development and operation of IT systems,
often incorporating practices such as continuous delivery, integration
and testing together with automated deployment.

A scheduler for Cloud Foundry that permits general
container workloads.

A form of access control where each user can determine the access
to particular resources owned by that user.

A directory system and the associated network protocol whereby the
client can look up an address and be returned resultant entries in the
directory. Most commonly used for translating a domain name into an
IP address, it can also be used for service discovery.

An open-source project that permits the user to package and automate
deployment of applications inside application containers.

A text file that describes to Docker what goes into a container,
permitting addition or modification of files from a base container and
exposure of ports.

A block storage product forming part of Amazon Web Services.

An open-source distributed key-value store that provides shared
configuration and service discovery, primarily developed by CoreOS.

A technique to provided a routed overlay network that provides simple
IP address management and hence supports high container densities.

An early form of inter-process isolation introduced in the FreeBSD
operating system.

A suite of cloud computing services offered by Google.

Virtual environments run within a host. For instance guest virtual
machines might be launched by a hypervisor running within a host
physical (or virtual) machine; a guest operating system might run within
a system container launched within a host operating system.

 24

Host

Hypervisor

IaaS (or “Infrastructure
as a Service”)

Isolation

Juju

Kernel

Kubernetes (or
referred to as K8)

KVM (or Kernel
Virtual Machine)

libcontainer

liblxc

LXC

LXD

MAC address

Machine container

Mandatory Access
Control (MAC)

The environment in which guests are run. For instance a host machine
is a physical or virtual machine in which a hypervisor is run in order to
launch guest virtual machines; a host operating system might launch
system containers to run guest containers.

Software that permits the creation of virtual machines within a physical
machine. Occasionally used to describe only Type I or Type II
hypervisors such as Xen or KVM where each virtual machine is required
to have its own kernel; in this paper we use the term ‘traditional
hypervisor’ for this meaning.

A form of cloud computing service that offers the user the ability to
purchase computing infrastructure (in the form of CPU, network and
storage resources) on a subscription basis. The resources often take
the form of virtual machines.

Techniques employed to prevent visibility of or interference in one
system by another.

An open source application and service modelling tool developed by
Canonical that permits rapid modelling, configuration, and deployment
of applications into the cloud.

A central component of an operating system that manages the boot of
the operating system and low-level functions such as access to
hardware. The operating system normally contains in addition to the
kernel a large number of system programs, some of which are launched
by the kernel on start-up.

An open-source container cluster manager that allows the user
to automate the deployment, scaling and operation of
application containers.

An open-source hypervisor built into the Linux kernel.

A library used by Docker and others that provides similar functionality
to liblxc and is used for low-level container management.

A library forming part of LXC that acts as the interface to the Linux
kernel to manage containers at a low level.

A low-level set of user-space tools for manipulating containers, formed
from the liblxc library, bindings for that library, a set of command line
tools that call the library, and a set of container templates.

An open-source tool that provides a means to manage system
containers, primarily developed by Canonical.

Media Access Control address, a unique identifier that is assigned
to a hardware or virtual interface at layer 2 of the OSI stack.

A form of container that shares the same kernel as the host, but
contains an independent operating system image (save for the kernel).
A system container thus acts similarly to a virtual machine in a
hypervisor environment.

A form of access control where a system-wide policy dictates which
users and/or processes are permitted to access which resources
in which manner, where such policy cannot be overridden by
individual users.

 25

A means of deploying software systems and applications from a
number of small self-contained services (“microservices”) each of which
performs an independent function with a well defined API and that can
be composed to form a larger application.

The ability of an operating system to execute more than one process
at once either by using more than one central processor unit, by time-
slicing between processes, or by a combination of the two methods.

A facility of the Linux kernel that allows segregation of resources into
different groups, so that different processes can have entirely separate
views of the relevant set of resources as managed by the
operating system.

A method for mapping one range of IP address space and ports
to another.

An open-source component of OpenStack that deals with the
orchestration of compute resources.

A plug-in to OpenStack that permits Nova to use LXD to create
instances of virtual machines as if it were dealing with a
conventional hypervisor.

An open-source suite of software that allows the user to create their
own cloud platform, predominantly aimed at IaaS private clouds.

An open-source version of the some of the container technology
within Virtuozzo.

A set of system software that manages the hardware and software
resources of a computer, providing a common set of services for
applications running on top of it. In this white paper we distinguish
between operating system software (including system applications,
system libraries and so forth) and the kernel.

A form of cloud computing service that offers a software platform
(i.e. a combination of development environment, software
components and APIs) that permits customers to deploy applications
onto a common base. The PaaS service is either hosted by the PaaS
vendor within a cloud platform or is available as software to be
installed by the customer on its own compute infrastructure.

A virtualisation technique where the virtual environment is similar to a
physical environment, but not identical. The principle difference is that
the guest operating system does not access virtual hardware through
emulation of that hardware by the host or the hypervisor, but rather
through a special software interface. By extension, a paravirtualised
driver is a driver for an operating system running as a hypervisor guest
that uses a similar technique to achieve enhanced I/O speeds.

A form of container which shares the same operating system as the
host. The container image is thus typically very small, holding only the
binaries necessary to run a single application. See also “Process
Containers (capitalised)”.

An early container initiative by Google that became the basis for
cgroups and Linux Namespaces. See also “Process container” (above).

Measures of performance of various resources (particularly I/O)
and levels those measures are meant to meet.

Microservices

Multitasking

Namespaces

NAT (or “Network
Address Translation”)

Nova

Nova LXD

OpenStack

OpenVZ

Operating System

PaaS (or “Platform
as a Service”)

Paravirtualisation

Process container

Process Containers
(capitalised)

Puppet

QoS (or “Quality
of Service”)

 26

RHEL

rkt

Salt

seccomp

SELinux

Service discovery

Swarm

SWSoft

System container

Traditional hypervisor

Ubuntu

Virtual Machine (or VM)

Virtualisation

Virtuozzo

VServer

Xen

Zones

Red Hat Enterprise Linux, a commercial Linux distribution sold
by Red Hat.

An open-source project (pronounced “rocket”) similar to Docker that
permits the user to package and automate deployment of applications
inside application containers.

An open-source configuration management utility primarily developed
by SaltStack.

A facility within the Linux kernel for application sandboxing whereby a
process can make a one way transition into a secure state in which the
system calls it can make are restricted.

A Linux kernel security module and associated user-space tools
permitting mandatory access control policies that restrict applications’
access to various resources managed by the kernel.

Techniques by which clients of a particular network service can locate
instances of that service that are available to it to use.

A native clustering tool for Docker that transforms a collection
of Docker hosts into a larger single Docker host.

An early innovator in the container space, later to become part
of Parallels Inc.

An alternative name for ‘Machine container’.

A Type I or Type II hypervisor such as Xen or KVM where each virtual
machine is required to have its own kernel, as opposed to (for instance)
LXD which provides hypervisor functionality without the necessity for
a virtual machine to have its own kernel.

An open source Debian-based Linux distribution published by
Canonical, who offer commercial support.

A simulated physical machine run within an actual physical machine
that behaves like a separate self-contained physical machine. The
simulation may be performed by an emulator or (for far better
performance) by a hypervisor.

Creation of a virtual (as opposed to physical) version of something,
most often creation of a virtual machine within a physical machine that
behaves like a virtual machine, or another form of virtual environment
capable of running software within another environment.

An early (and current) commercial container offering produced by
SWSoft, which later became part of Parallels. The company producing
Virtuozzo is now itself called Virtuozzo. Many of the kernel
components were released as OpenVZ and became part of the Linux
kernel.

An early form of interprocess isolation available as a set of patches
to the Linux operating system that were aimed at hosting providers.

An open-source hypervisor that uses a microkernel design, often
but not exclusively using Linux to manage it.

A form of container available on Solaris.

© Canonical Limited 2017. Ubuntu, Kubuntu, Canonical and their associated logos are the registered trademarks
of Canonical Ltd. All other trademarks are the properties of their respective owners. Any information referred
to in this document may change without notice and Canonical will not be held responsible for any such changes.

Canonical Limited, Registered in England and Wales, Company number 110334C Registered Office:
12-14 Finch Road, Douglas, Isle of Man, IM99 1TT VAT Registration: GB 003 2322 47

