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Executive overview
 
Container technology has brought about a step-change in virtualisation 
technology. Organisations implementing containers see considerable 
opportunities to improve agility, efficiency, speed, and manageability within 
their IT environments. Containers promise to improve datacenter efficiency 
and performance without having to make additional investments in hardware 
or infrastructure.

This white paper explains the background and timeline to the development 
of containers, and the most recent technology that has led to the proliferation 
of containers on the Linux platform. It explains the differences between and 
advantages and disadvantages of process containers and machine containers. 
It examines the two main software tools (Docker and LXD) that are used  
to manipulate containers. Lastly, a glossary at the end of the paper provides  
a convenient reference point for the technical terms used within the paper.

Traditional hypervisors provide the most common form of virtualisation, 
and virtual machines running on such hypervisors are pervasive in nearly 
every datacenter.
 
Containers offer a new form of virtualisation, providing almost equivalent levels 
of resource isolation as a traditional hypervisor. However, containers are lower 
overhead both in terms of lower memory footprint and higher efficiency. This 
means higher density can be achieved – simply put, you can get more for the 
same hardware.
 
Containers come in two varieties: process containers and machine containers. 
Machine containers act very much like lightweight physical or virtual machines, 
having their own full operating system image, but sharing the same kernel as 
the host machine; they share familiar tooling and workflow and are simple to 
adopt. Process containers are still more lightweight, only containing the binaries 
or processes for the specific application they run. As such, they require changes 
in workflow, which may carry associated costs. However, these same changes 
in workflow provide other advantages, such as the ability to change easily to 
immutable infrastructure, which itself brings benefits in terms of creating 
large, manageable, scalable deployments.
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Large deployments of containers bring challenges associated with network 
management and service discovery. If each container carries its own IP address 
(which is the simple route to avoiding service discovery problems), IP address 
management and management of overlay networking become significant issues 
in a large estate. Technologies such as fan networking, popularised by Canonical, 
can significantly alleviate such issues.
 
The attraction of containers is not just static efficiency. Containers are also 
quicker to spin up and take down. This facilitates a more scalable architecture 
where applications are divided up into microservices where each such service 
can be developed, deployed, and scaled independently. Such an architecture 
provides greater agility and business responsiveness, as well as lower total cost 
of ownership and greater resilience; however, it requires container orchestration 
software in order to take full advantage.
 
Containers thus present a new opportunity for the CTO to reduce cost, to 
increase agility, and to move to a more scalable and resilient architecture. 
However, CTOs must also recognize that some use cases are better suited to 
containers than others, that grasping this opportunity requires a recognition 
of transition costs, and that in some cases this change in infrastructure also 
brings some challenges. These concepts are more fully explained within the 
body of this white paper.
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The background of containers
 
THE HISTORICAL CONTEXT

Virtualisation first arrived on the Linux operating system in the form of 
hypervisors such as Xen and KVM (kernel virtual machines) - referred to in 
this paper as ‘traditional hypervisors’. Each segment of the host machine 
being known as a ‘virtual machine’, running its own operating system kernel.

Those who ran applications that were particularly cost sensitive (the first 
example being consumer web hosting) attempted to squeeze as much out 
of a given piece of hardware as possible. However, high densities were difficult 
to achieve with existing forms of virtualisation, especially when the application 
was small in size compared to the kernel, as much of the system’s memory was 
taken up with multiple copies of kernel – often the same kernel. Hence in 
such high density applications, machines were instead divided using cruder 
technologies (for instance ‘chroot jails’) despite the fact that this provided 
imperfect workload isolation and carried security implications. In 2001, 
operating system virtualisation (in the form of Linux vServer) was introduced 
as a series of kernel patches. 

This was an early form of container virtualisation. Rather than running one copy 
of the kernel per tenant, the kernel itself recognized separate groupings of 
processes as belonging to different tenants, each sharing the same kernel, but 
each being isolated from each other. Moreover, borrowing ideas from FreeBSD 
jails and Solaris zones, formed the basis of Google’s Process Containers, which 
eventually became cgroups and Linux namespaces, the basis of modern Linux 
containers, with the user-space program ‘LXC’ was introduced by IBM and 
Canonical to manage them.

CONTAINERS AND APPLICATIONS TODAY

As containers do not contain their own kernel, they are typically quick to 
deploy and remove. They can take two forms: process containers (a container 
containing only a single application), or machine containers (a container with its 
own user-space operating system, but sharing the kernel of a host). In modern 
usage, the term ‘container’ refers not just to the runtime isolation mechanism, 
but also to the image deployed with it; these two forms of container differ in 
the type of image deployed.
 
In the meantime, applications themselves have changed. Rather than single 
monolithic processes, they are now composed of multiple components. Each 
component may have many instances running at once in order to scale, and 
each component needs to communicate with other components. This division 
of the application into many component elements is often referred to as 
‘microservices’ (see glossary).
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The need for rapid deployment, both to scale and to allow swift, simple 
upgrades to individual components in keeping with the trend towards  
‘DevOps’ and agile development methodologies. Both favour the use of 
containers, as each application is small compared to the operating system 
(which would thus constitute a significant overhead in traditional hypervisor-
based virtualisation) and upgrades can be performed without the overhead 
of an operating system boot.
 
These trends have also brought a growing need to track, and to reproducibly 
create and destroy, the increasing number of containers, and the container 
management tools address this need. Docker manages process containers on 
a single host and provides the de-facto standard for packaging files within a 
container image. Similarly, LXD provides a means of running machine containers 
on a single host. Technologies such as Docker Swarm and Kubernetes allow the 
management of containers across multiple hosts. These technologies represent 
the current status of container technology.

Date

1982

2000

2001

2004

2005

2006

2007

2008

2010

2013

2014

2015

2016

Event

Addition to BSD of chroot system call, permitting process level isolation

Introduction of FreeBSD jails and SWSoft’s (later Parallels) Virtuozzo, file system 
isolation, memory isolation, network isolation and root privilege isolation

Linux VServer patches bring rudimentary containers to Linux

Sun Microsystems (later Oracle) introduces Solaris Zones, bringing containers 
to Solaris

Parallels releases OpenVZ kernel patches for Linux, including some of its 
Virtuozzo container technology

Google develops ‘Process Containers’ for Linux

Control Groups and Namespaces merged into Linux kernel (Process Containers 
renamed)

LXC userland tooling for Linux Containers released by IBM

Ubuntu booting in an LXC machine container, Canonical assumes stewardship 
of LXC

Docker released

LXC 1.0 (stable version with long term support) released

LXD released by Canonical

Canonical’s Distribution of Kubernetes

https://www.ubuntu.com/cloud/kubernetes
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1.

Without virtualisation or containers 

Traditional hypervisor-based virtualisation allows guest kernels to run on 
top of (or alongside) a host kernel. Each of these guest kernels runs its own 
operating system instance. These traditional hypervisors provide optimum 
isolation as well as the ability to run a wide range of operating systems and 
kernels simultaneously on the same hardware. However, they come with 
a number of disadvantages: 

 Each kernel and operating system takes a while to boot.

  Each kernel takes up its own permanent memory footprint and carries a CPU 
overhead, so the overhead of virtualisation is quite large.

  I/O is less efficient. In order for the guest application to perform I/O, it needs 
first to call the guest kernel, which makes a request to what it believes is the 
hardware. Which is in turn emulated by the hypervisor, and passed to the host 
operating system, and finally to the hardware. The response is then passed the 
same circuitous route; although paravirtualised drivers have been introduced 
to remove the emulation overhead, two kernels are still involved, and thus 
there is still performance degradation, both in terms of overhead and latency. 

WHAT EXACTLY IS A CONTAINER?

Containers are a technology that allows the user to divide up a machine so 
that it can run more than one application (in the case of process containers) 
or operating system instance (in the case of machine containers) on the 
same kernel and hardware, and in so doing maintain isolation between 
these workloads.

Before containers came to prime-time, two other techniques were used: 
multitasking and traditional hypervisor-based virtualisation.

Multitasking allows multiple applications to run on the same operating 
system, kernel, and hardware; however, it provides little isolation between 
different applications. For instance a runaway application might exhaust 
memory, I/O capability or disk space. A malicious or buggy application might 
provide access to the operating system and hence the data of every application. 

Hardware / Virtual machine / Machine containter

Host Kernel

Host OS

App A App B App C App D App E App F App G App H

2.

3.
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Hypervisor virtualisation overhead of disk write

  Resources are not allocated on a fine-grained basis. As a simple example, each 
virtual machine has a memory size specified on creation, so memory left idle 
by one virtual machine is not in general available to another. Technologies 
such as ‘ballooning’ can alleviate the problem, resource allocation is 
necessarily less efficient. 

  The maintenance load of keeping up to date one kernel per virtual machine (as 
is necessary under traditional hypervisor-based virtualisation) is significantly 
greater than one kernel per host (as is the case under container-based 
virtualisation), and the resultant downtime with traditional hypervisor-based 
virtualisation is also correspondingly greater.

Hypervisor virtualisation

Hardware / Virtual machine / Machine container

Host Kernel

Hypervisor

Guest Kernel

Guest OS

Application

VM

Host OS

SATA/SCSI driver

Disk

SATA/SCSI driver

SATA/SCSI emulator

Hardware / Virtual machine / Machine container
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Guest OS

VM
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Guest OS

VM
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Guest OS
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4.

5.
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Machine containers overhead of disk write

The containers provide isolation that is almost as good as a traditional 
hypervisor; in fact the isolation is more flexible as containers can (for instance) 
share some resources but not others. Boot is faster as there is no kernel to start 
up, and (in the case of process containers) no operating system to start – in fact, 
even machine containers tend to carry lightweight operating systems with 
sub-second boot times. And resource allocation via cgroups is fine-grained, 
being handled by the host kernel, allowing the effective per-container quality 
of service (QoS) metrics and additional efficiency driven by more flexibility  
in job scheduling. For instance, in Google’s Borg container orchestration system, 
long running compute-intensive batch jobs are typically run in containers 
alongside more latency-sensitive user-facing applications.

The latter typically reserve more resources than they need on a continuous 
basis to satisfy the latency requirements in the event of spikes in load or 
diminution of availability of some cluster members. The batch jobs are able 
to make use of this unused capacity, subject to preemption by the user-facing 
applications. cgroups also provides accurate measurement of consumption of 
these resources, allowing for development of tools such as Google’s cAdvisor 
as well as intelligent autoscaling. 

Host OS

LXD

Guest OS

Application

Machine container

Hardware / Virtual machine / Machine container

Host Kernel

Disk

SATA/SCSI driver

Containers to some extent provide the best of both worlds. A single kernel 
handles logically separate instances of applications (process containers) 
or operating systems (machine containers). I/O thus passes directly from 
the application to the host kernel, and to the hardware, and therefore 
performance is the same as with native applications, and latency is minimized.
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However, there are disadvantages of containers compared to traditional 
hypervisor-based virtualisation that include:

  Guests are limited to those that can use the same kernel: you cannot directly 
run a Windows OS within a Linux container 

  There is arguably additional isolation provided by a traditional hypervisor 
that is not available to containers, meaning the ‘noisy neighbour’ problem is 
potentially more significant on containers than under a traditional hypervisor. 
However, it should be noted that this difference has been minimized in recent 
years by advances in kernel support for containers. For example, there are 
resources like level 3 processor cache and memory bandwidth which neither 
virtualisation technology can arbitrate. Additional isolation provided by a 
traditional hypervisor can be argued to make traditional hypervisor-based 
virtualisation more secure than containers, though this is in essence a 
question of whether the traditional hypervisor’s defences are better than the 
kernel’s defences. Fourthly, there are disadvantages of running a single kernel 
– an ‘all eggs in one basket’ argument. If that kernel crashes or is exploited, 
perhaps due to a vulnerability within an application which itself is insecure, 
the whole machine is compromised; and upgrading that kernel is thus 
arguably more problematic (as more depends on it) than upgrading kernels 
in a traditional hypervisor based environment

  Techniques such as live migration of containers are in their infancy compared 
to the equivalent on traditional hypervisors

It is worth noting that virtualisation techniques can be nested. For instance, 
traditional hypervisors can be run inside hypervisors or containers, and 
containers can be run inside traditional hypervisors or containers. This, at 
the expense of some complexity, provides further flexibility in the resource 
isolation and performance trade-off.
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PROCESS VS. MACHINE CONTAINERS 

We have briefly distinguished above between process containers and machine 
containers, saying that a process container contains only a single application, 
but a machine container contains one or more applications, and its own 
operating system. In either case, they share a kernel with the host. To drill  
down a little more into the differences, we need to understand a little more 
about how applications work in a Linux environment, and what exactly we  
mean by ‘Operating System’.
 
In a process container environment such as Docker, containers are designed to 
be very small. They contain only the binaries for a single application. Often these 
are statically linked, or contain a minimal subset of libraries necessary for that 
application alone. For instance, they need not contain a shell, or a traditional 
‘init’ process. The disk space required for a process container can be very small 
indeed (perhaps as little as a couple of megabytes). Technologies such as Docker 
are often able to ‘compose’ such containers (overlay one image upon another) 
so an application can be built upon a base template. Read-write storage is 
normally separated from the image. As a result, these tend to be ideal for 
building small immutable services. Of course a real world deployment may 
contain tens or hundreds of such services. 
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A machine container environment, such as one provided by LXD, looks far more 
similar to a virtual machine. The container will appear to have its own disk image, 
often containing a cut down version of an operating system. It will have its own 
init process, and may run a limited number of daemons. Normally it would also 
contain a shell. Programs are installed in the manner that the guest operating 
system would normally expect (for instance using ‘apt-get’ on an Ubuntu 
system). LXD thus functions similarly to a traditional hypervisor. The containers 
are normally stateful, i.e. they provide mutable configuration, though copy-on-
write technologies allow them to be reset easily to their initial configuration. 
Some sources refer to machine containers as ‘system containers’.
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Machine contaiers 

We can see from the above that we have used ‘operating system’ to mean 
the user-space programs that surround the kernel that do not form part of 
the application itself. The fact that machine containers each have their own 
‘operating system’ does not mean they each have a full running copy of Linux 
or their own kernel. Rather they run a few lightweight daemons and have a 
number of files necessary to provide a separate ‘OS within an OS’.
 
There is a third route for deployment of containers. This is to utilize the ability 
of containers to nest, and to run process containers within machine containers 
– for instance to run Docker containers within LXD containers. As containers 
are so lightweight, this mixed container environment is an eminently practical 
proposition, and provides an excellent way to manage Docker hosts.
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Containers on Linux and LXC

Containers on Linux
The terminology surrounding containers on Linux can be confusing, in part 
because the names of various components have changed, some projects have 
morphed into other projects, and occasionally the same name has been used 
for more than one component. This section sets out the current state of play.

Containers on Linux and LXC

At the bottom of the stack is the Linux kernel. Perhaps surprisingly, the 
Linux kernel does not itself have a concept of ‘containers’ per-se; rather the 
functionality of containers is provided by three kernel concepts: cgroups 
(control groups), Linux namespaces, and the kernel security infrastructure.

Control groups limit and account for different types of resource usage (CPU, 
memory, disk I/O, network I/O and so forth) across a collection of different 
processes; they also provide prioritization of resource usage, and control 
via checkpointing.

Linux namespaces provide ways to segregate various types of Linux resources 
into different groups, for instance network namespaces permit different groups 
of processes to have completely independent views of the Linux networking 
stack. The other resource types that can be segregated include the process ID 
space, the mounted filesystems, the filesystem attributes, the IPC space, and 
the System V semaphore space. If all spaces are segregated, the segregated 
processes have no operating system attributes in common with those that 
launched them. 

Hardware / Virtual machine / Machine containter

Host Kernel

Namespaces CGroups Security

libcontainerliblxc

lxc-command line LXD Docker
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So a container in kernel terms is a tree of processes that is segregated from the 
tree of processes that launched it, and normally that segregation applies to all 
the resources.
 
But, segregation is not sufficient for isolation. To fully isolate a container it 
must not only be unable to ‘see’ into other containers, but it must also have its 
resource usage controlled. For instance, it should not be able to hog memory or 
I/O bandwidth that other containers may need. To achieve this, the Linux kernel 
uses cgroups to protect one container from resource starvation or contention 
caused by another container (whether that originates from a runaway process 
or a denial of service attack), and thereby provide QoS guarantees.
 
Lastly, the kernel provides a level of security to containers via Apparmor, 
SELinux, kernel capabilities and seccomp. These prevent, amongst other things, 
a process running as root in a container having full access to the system (for 
instance to hardware), and aid in ensuring processes cannot escape the 
container in which they run. Containers thus offer two complementary forms 
of access control. Firstly, discretionary access control (DAC) mediates access to 
resources based on user-applied policies, so that individual containers cannot 
interfere with each other, and can be run by non-root users securely. Secondly 
mandatory access control (MAC) ensures that neither the container code itself 
nor the code run within the containers has a greater degree of access than the 
process itself requires, so the privileges granted to rogue or compromised 
process are minimised.
 
Above the kernel lies the user-space toolset for manipulating containers, the 
most popular of which is LXC. This itself is divided into a number of parts: a 
library called liblxc which does all the heavy lifting, language bindings for that 
library, a set of command line tools to manipulate containers at a low level, 
and a set of standard container templates.

It is possible to use LXC containers directly, but they are unlikely to have much 
practical application as the interface is very low level. Hence most users abstract 
them further, using programs such as Docker to build process containers, or LXD 
to build machine containers.
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Docker and process containers

Docker is an open-source project that permits the user to automate deployment 
of applications inside process containers. It permits a small subset of a filing 
system (just those files necessary for an application to run) to be built into a 
template, and then allows this to be deployed, repeatedly, into a lightweight 
container. As such the application is packaged to be separate from the 
operating system on which it is run. By using only static libraries (or libraries 
built into the container image), a container built on one version of Ubuntu can 
run on a host running another; a container built on RHEL (for instance) could 
even be run on Ubuntu.
 
Docker follows the principle of immutable infrastructure. When launched, each 
container looks exactly like its template, so if a container is restarted all changes 
previously made are lost. This ensures that a given container launches the same 
each time, and avoids configuration drift where updates to a template and a 
running machine get out of sync. The recommended way to update a container 
is simply to destroy it and restart it with a new image. Of course, it is necessary 
to store state somewhere – for instance a database needs to store its data 
somewhere. Docker provides ‘volumes’ for this purpose. Volumes are external 
containers that have data and no code, which are bound to the template 
at runtime to create the running containerized application. This move to 
immutable infrastructure and configuration can represent a significant 
change of working practices (and thus an obstacle to adoption) but ultimately 
is a powerful weapon in simplifying management of large container estates, 
particularly when combined with container orchestration.
 
Docker uses a plain text configuration file (called a Dockerfile) in order to 
describe what goes into a container, and permits composing of existing 
templates and new files to produce new templates. In this way existing 
templates can be built upon and modified. Underlying this (and the 
immutability described above) is Docker’s use of copy-on-write filesystems. 
Cut down versions of various distributions (including Ubuntu, Centos, and 
CoreOS) are provided as base templates, but need not necessarily be used. 
The built templates, in the form of images, can be uploaded and shared, 
and thus can be downloaded from a public or private image repository.
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Docker has an unusual way of dealing with networking. Each container is not 
a full-blown independent operating system image, and thus does not necessarily 
have its own IP address. Rather it runs one or more processes, each of which 
typically will be listening on one port. The Dockerfile can therefore describe 
which of these ports need to be ‘exposed’, which in practice means mapped 
by port translation to a port on the host. For system administrators, this change 
in technique may require significant acclimatisation. Newer versions of Docker 
permit containers to have their own IP addresses, and have network interfaces 
mapped to bridges or overlay networks.
 
Docker previously used LXC to build its containers, but now by default uses 
libcontainer, which provides similar functionality.
 
Docker has a significant ecosystem of other tools into which it is integrated. 
For instance, it forms the basis of container management in Kubernetes and 
is integrated into the Cloud Foundry PaaS. It also has integrations with 
conventional configuration management tools such as Ansible, CFEngine, 
Chef, Puppet, and Salt, and with various cloud platforms such as AWS, GCE, 
Azure and OpenStack.
 
Alternatives to Docker exist, primarily rkt (pronounced ‘rocket’), an open- 
source rival to Docker whose development is led by CoreOS; it provides  
broadly similar functionality.
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LXD and machine containers

LXD is an open-source tool that provides a means to manage machine 
containers. These act far more like virtual machines on a traditional hypervisor 
than the process containers managed by Docker, which has led to LXD being 
described by Canonical as a “pure container hypervisor”.
 
LXD is made up of three components. Firstly, a system-wide daemon (itself 
called ‘lxd’) performs all the heavy lifting. It provides a REST API for local 
usage, which can also be exported over the network if desired. This daemon 
communicates with liblxc to create the containers themselves. Secondly a 
command line tool (called ‘lxc’, but used to manipulate LXD containers not 
LXC containers) communicates with the daemon, either on the same host or 
over the network, via the REST API. Thirdly, a plugin to OpenStack (Nova LXD) 
allows OpenStack to use LXD as a hypervisor, so that OpenStack can create 
instances on LXD in the same way that it would normally create virtual 
machines running on a traditional hypervisor such as KVM. 
 
Security has been a key principle of LXD from the design stage. It creates 
unprivileged containers by default (meaning non-root users can launch 
containers). Resource constraints for containers were built in from the start 
rather than as an afterthought. It thus provides a simple way of creating 
machine containers with excellent isolation from the rest of the system.
 
By providing operation over the network as well as locally, containers can be 
created on remote systems through the same command line prompt as is used 
to create containers on the developer’s own laptop. This allows for simple 
scalability and management of containers over multiple hosts.
 
LXD is designed to be an intuitive system, having a clean API and command line. 
It is thus easy to get going, and will be familiar to those who have come from 
a virtual machine environment.
 
LXD containers are image-based, meaning that each container has a full filing 
system, rather than a composition of templates as with process containers. This 
means existing trusted image sources can be used, and one can be share those 
image repositories used for traditional hypervisor-based virtual machines.  
This makes migration between hypervisor-based environments easy.
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LXD also provides support for live-migration, so that if a host node needs 
maintenance, the container can be migrated elsewhere to ensure continuity 
of service. Again, in this way it is similar to traditional hypervisor-based virtual 
machines. Various other features familiar to traditional hypervisor users are 
also available, such as snapshots and device passthrough.
 
As LXD containers are fully isolated containers, they have networking that 
appears very similar to virtual machine based networking. Each container has 
its own IP address (or IP addresses), and the container’s virtual Ethernet device 
can appear on a bridge in the host. This makes networking no different to that 
of virtual machines on a traditional hypervisor, and avoids the complexity of 
port mapping and exposure. It does however mean that IP address management 
becomes more complex, and that it is necessary to protect (via packet filters 
or otherwise) machine containers in the same manner that one would need 
to protect virtual machines.
 
As set out above, it is possible to nest containers within machine containers, 
so one can run Docker within a LXD container, or even LXD containers within 
a LXD container.
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Containers and the need  
for orchestration software

The need for business agility has led to commercial pressure for more frequent 
deployment of software. In order to support this, new software development 
techniques (broadly classed as ‘agile’) and new operational cultures (such as 
‘DevOps’) have taken hold, allowing for increased frequency of deployment 
changes.
 
In order to support such rapid change cycles, applications increasingly tend  
to be built from existing components, be they re-using in-house technology  
or (more commonly) utilizing open-source elements. Rather than a monolithic 
application, a modern application consists of multiple components, many being 
open source elements running unchanged bar configuration (for instance 
databases, web-servers, message queues and so forth), with a smaller number 
being written in-house (for instance elements of business logic). The logical 
conclusion of this is trend is a situation in which the application is composed 
entirely of microservices, small independently deployable services 
communicating locally over a network.
 
Containers provide an ideal vehicle for such components due to their low 
overhead and speed of deployment. They also permit efficient horizontal scaling 
by deployment of multiple identical containers of the relevant component each 
sharing the same image. Modern applications thus might be built from hundreds 
or even thousands of containers, potentially with complex interdependencies. 
How can such containers be deployed in a reliable and reproducible manner?  
If a given container ceases to function, how can it automatically be replaced? 
And if an application needs to scale, how can the correct component to scale be 
identified and have its array of containers expanded? These are issues addressed 
by container orchestration software. 
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How Canonical helps

Canonical’s Ubuntu Linux distribution allows organisations direct access to all 
significant Linux container technology. Ubuntu brings variety, velocity and 
quality: variety meaning a wide selection of container technology from which 
your organisation can select the most suitable choice; velocity meaning 
timeliness of delivery with a release cadence that ensures the most up-to-date 
versions of container software are available to you through our predictable 
release cadence; and quality meaning a keen focus on usability, compatibility 
and interoperability.

In conjunction with Google, Canonical has released its own distribution of 
Kubernetes - The Canonical Distribution of Kubernetes (CDK). CDK provides a 
‘pure K8s’ experience, tested across a wide range of clouds and integrated with 
modern metrics and monitoring. Further, CDK works across all major public 
clouds and private infrastructure, enabling teams to operate Kubernetes 
clusters on demand, anywhere.

Canonical is helping many companies to get the most out of containers. From 
creating distributed applications and Microservices for Platform as a Service 
(PaaS) environments, Batch and ETL (extract, transform, load) jobs within the 
financial services industry, and improving DevOps efficiency through continuous 
integration and deployment. 
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Next steps

Containers offer a new form of virtualisation, with lower overhead than 
traditional hypervisors both in terms of lower memory footprint and higher 
efficiency. This allows organisations to achieve higher density, and run the same 
compute load for less money. Machine containers provide a simple means to 
garner this cost advantage for Linux-on-Linux workloads without application 
redesign, whereas process containers allow additional opportunity to increase 
agility and to move to a more scalable and resilient architecture.

To discover how Canonical can help you take advantage of containers, we  
invite you to test-drive the Canonical Distribution of Kubernetes and LXD 
containers using Conjure-up. This pure upstream distribution of Kubernetes is 
designed to be easily deployable to public clouds, on-premise, bare metal, and 
developer laptops. During the installation, conjure-up will ask you what cloud 
you want to deploy on and prompt you for the proper credentials. If you’re 
deploying to local containers (LXD) see these instructions for localhost- 
specific considerations.

For production grade deployments and cluster lifecycle management  
it is recommended to read the full Canonical Distribution of Kubernetes 
documentation.

Home page: jujucharms.com/canonical-kubernetes/
Source code: github.com/juju-solutions/bundle-canonical-kubernetes

If you want to learn more about how Canonical can help to develop and 
deploy your container strategy, please call +1 781 761 9427 (Americas),  
+44 207 093 5161 (Rest of World) or contact us online. 

https://www.ubuntu.com/cloud/kubernetes
https://kubernetes.io/docs/getting-started-guides/ubuntu/local/
https://kubernetes.io/docs/getting-started-guides/ubuntu/
https://kubernetes.io/docs/getting-started-guides/ubuntu/
http://jujucharms.com/canonical-kubernetes/
https://github.com/juju-solutions/bundle-canonical-kubernetes
https://www.ubuntu.com/cloud/contact-us
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Agile Software 
Development

Ansible

AppArmor

Application

Application container

ARP

AWS (or “Amazon 
Web Services”)

Azure

Ballooning

Borg

cAdvisor

CentOS

Ceph

cgroups (or Control 
Groups)

Chef

chroot

Cloud Foundry

A set of concepts, practices and principles for the development of 
software under which both requirements and the software that meets 
them evolve during the development life-cycle by processes of 
collaboration, as opposed to being defined at milestones within it.

An open-source configuration management utility primarily developed 
by Red Hat.

A Linux kernel security module allowing restriction of the capabilities 
of a process based on a profile that is distributed with the application 
containing the process.

A computer program or set of computer programs designed to 
perform a particular activity or set of activities.

Occasionally used as a synonym for ‘process container’.

Address Resolution Protocol, a protocol translating IP addresses (layer 
3 addresses) into MAC addresses (layer 2 address).

A suite of cloud computing services offered by Amazon, including EC2 
(or “Elastic Cloud Compute”), an IaaS service.

A suite of cloud computing services offered by Microsoft.

A technique within hypervisor-based virtualisation where memory 
pages not used by the guest operating system can be returned to the 
host (or other guests).

A proprietary container orchestration system produced and used 
internally by Google, which is the predecessor to Kubernetes.

An open-source tool produced by Google that allows users to 
introspect the performance and resource usage of their containers.

An open source community-supported Linux distribution aiming for 
functional compatibility with RHEL.

An open-source a distributed block store, object store and file system 
primarily developed by Red Hat.

A facility provided by the Linux Kernel that allows limitation and 
accounting of usage of various resources (including CPU, disk I/O and 
network I/O) across groups of different processes, and prioritization 
between these groups of processes.

An open-source configuration management utility primarily developed 
by the eponymous company named Chef.

A system call in UNIX operating systems that changes the root 
directory to an alternate point in the filesystem hierarchy, thus 
providing a view of a subset of the filesystem as opposed to the whole.

An open-source Platform-as-a-Service software suite overseen by the 
Cloud Foundry Foundation. The new scheduler (Diego) permits general 
container workloads. An enterprise edition is distributed by Pivotal  
and others.

Glossary



  23

Compose (as “ 
Docker Compose”)

Container

Copy-on-write

CoreOS

Device passthrough

DevOps

Diego

Discretionary access 
control (DAC)

DNS (or “Domain  
Name System”)

Docker

Dockerfile

EBS (or “Elastic 
Block Store”)

etcd

Fan networking

FreeBSD jail

GCE (or “Google 
Compute Engine”)

Guest

An open-source tool for defining and running multi-container Docker 
applications.

A virtualisation method whereby the host operating system permits 
multiple isolated guest environments (“containers”) that share the 
same kernel (in vthe case of system containers) or operating system (in 
the case of application containers).

A technology whereby a copy of resource is made in a delayed manner. 
Rather than copying the resource immediately, the resource is marked 
as copied, and when either the copy or (on occasion) the original is 
written to, a copy of the written area is made, meaning that only the 
differences are recorded.

An open source lightweight Linux distribution optimised for container 
usage distributed by the eponymous company CoreOS.

A technique allowing virtual machine guests direct access to hardware 
that would otherwise be managed by the host.

A group of concepts and practices that emphasise integration of and 
collaboration between development and operation of IT systems, 
often incorporating practices such as continuous delivery, integration 
and testing together with automated deployment.

A scheduler for Cloud Foundry that permits general  
container workloads.

A form of access control where each user can determine the access  
to particular resources owned by that user.

A directory system and the associated network protocol whereby the 
client can look up an address and be returned resultant entries in the 
directory. Most commonly used for translating a domain name into an 
IP address, it can also be used for service discovery.

An open-source project that permits the user to package and automate 
deployment of applications inside application containers.

A text file that describes to Docker what goes into a container, 
permitting addition or modification of files from a base container and 
exposure of ports.

A block storage product forming part of Amazon Web Services.

An open-source distributed key-value store that provides shared 
configuration and service discovery, primarily developed by CoreOS.

A technique to provided a routed overlay network that provides simple 
IP address management and hence supports high container densities.

An early form of inter-process isolation introduced in the FreeBSD 
operating system.

A suite of cloud computing services offered by Google.

Virtual environments run within a host. For instance guest virtual 
machines might be launched by a hypervisor running within a host 
physical (or virtual) machine; a guest operating system might run within 
a system container launched within a host operating system.
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Host

Hypervisor

IaaS (or “Infrastructure 
as a Service”)

Isolation

Juju

Kernel

Kubernetes (or  
referred to as K8 )

KVM (or Kernel 
Virtual Machine)

libcontainer

liblxc

LXC

LXD

MAC address

Machine container

Mandatory Access 
Control (MAC)

The environment in which guests are run. For instance a host machine 
is a physical or virtual machine in which a hypervisor is run in order to 
launch guest virtual machines; a host operating system might launch 
system containers to run guest containers.

Software that permits the creation of virtual machines within a physical 
machine. Occasionally used to describe only Type I or Type II 
hypervisors such as Xen or KVM where each virtual machine is required 
to have its own kernel; in this paper we use the term ‘traditional 
hypervisor’ for this meaning.

A form of cloud computing service that offers the user the ability to 
purchase computing infrastructure (in the form of CPU, network and 
storage resources) on a subscription basis. The resources often take 
the form of virtual machines.

Techniques employed to prevent visibility of or interference in one 
system by another.

An open source application and service modelling tool developed by 
Canonical that permits rapid modelling, configuration, and deployment 
of applications into the cloud.

A central component of an operating system that manages the boot of 
the operating system and low-level functions such as access to 
hardware. The operating system normally contains in addition to the 
kernel a large number of system programs, some of which are launched 
by the kernel on start-up.

An open-source container cluster manager that allows the user  
to automate the deployment, scaling and operation of  
application containers.

An open-source hypervisor built into the Linux kernel.

A library used by Docker and others that provides similar functionality 
to liblxc and is used for low-level container management.

A library forming part of LXC that acts as the interface to the Linux 
kernel to manage containers at a low level.

A low-level set of user-space tools for manipulating containers, formed 
from the liblxc library, bindings for that library, a set of command line 
tools that call the library, and a set of container templates.

An open-source tool that provides a means to manage system 
containers, primarily developed by Canonical.

Media Access Control address, a unique identifier that is assigned  
to a hardware or virtual interface at layer 2 of the OSI stack.

A form of container that shares the same kernel as the host, but 
contains an independent operating system image (save for the kernel). 
A system container thus acts similarly to a virtual machine in a 
hypervisor environment.

A form of access control where a system-wide policy dictates which 
users and/or processes are permitted to access which resources  
in which manner, where such policy cannot be overridden by  
individual users.
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A means of deploying software systems and applications from a 
number of small self-contained services (“microservices”) each of which 
performs an independent function with a well defined API and that can 
be composed to form a larger application.

The ability of an operating system to execute more than one process 
at once either by using more than one central processor unit, by time- 
slicing between processes, or by a combination of the two methods.

A facility of the Linux kernel that allows segregation of resources into 
different groups, so that different processes can have entirely separate 
views of the relevant set of resources as managed by the  
operating system.

A method for mapping one range of IP address space and ports  
to another.

An open-source component of OpenStack that deals with the 
orchestration of compute resources.

A plug-in to OpenStack that permits Nova to use LXD to create 
instances of virtual machines as if it were dealing with a  
conventional hypervisor.

An open-source suite of software that allows the user to create their 
own cloud platform, predominantly aimed at IaaS private clouds.

An open-source version of the some of the container technology  
within Virtuozzo.

A set of system software that manages the hardware and software 
resources of a computer, providing a common set of services for 
applications running on top of it. In this white paper we distinguish 
between operating system software (including system applications, 
system libraries and so forth) and the kernel.

A form of cloud computing service that offers a software platform  
(i.e. a combination of development environment, software 
components and APIs) that permits customers to deploy applications 
onto a common base. The PaaS service is either hosted by the PaaS 
vendor within a cloud platform or is available as software to be 
installed by the customer on its own compute infrastructure.

A virtualisation technique where the virtual environment is similar to a 
physical environment, but not identical. The principle difference is that 
the guest operating system does not access virtual hardware through 
emulation of that hardware by the host or the hypervisor, but rather 
through a special software interface. By extension, a paravirtualised 
driver is a driver for an operating system running as a hypervisor guest 
that uses a similar technique to achieve enhanced I/O speeds.

A form of container which shares the same operating system as the 
host. The container image is thus typically very small, holding only the 
binaries necessary to run a single application. See also “Process 
Containers (capitalised)”.

An early container initiative by Google that became the basis for 
cgroups and Linux Namespaces. See also “Process container” (above).

Measures of performance of various resources (particularly I/O)  
and levels those measures are meant to meet.

Microservices

Multitasking

Namespaces

NAT (or “Network 
Address Translation”)

Nova

Nova LXD

OpenStack

OpenVZ

Operating System

PaaS (or “Platform 
as a Service”)

Paravirtualisation

Process container

Process Containers 
(capitalised)

Puppet

QoS (or “Quality 
of Service”)
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RHEL

rkt

Salt

seccomp

SELinux

Service discovery

Swarm

SWSoft

System container

Traditional hypervisor

Ubuntu

Virtual Machine (or VM)

Virtualisation

Virtuozzo

VServer

Xen

Zones

Red Hat Enterprise Linux, a commercial Linux distribution sold 
by Red Hat.

An open-source project (pronounced “rocket”) similar to Docker that 
permits the user to package and automate deployment of applications 
inside application containers.

An open-source configuration management utility primarily developed 
by SaltStack.

A facility within the Linux kernel for application sandboxing whereby a 
process can make a one way transition into a secure state in which the 
system calls it can make are restricted.

A Linux kernel security module and associated user-space tools 
permitting mandatory access control policies that restrict applications’ 
access to various resources managed by the kernel.

Techniques by which clients of a particular network service can locate 
instances of that service that are available to it to use.

A native clustering tool for Docker that transforms a collection  
of Docker hosts into a larger single Docker host.

An early innovator in the container space, later to become part  
of Parallels Inc.

An alternative name for ‘Machine container’.

A Type I or Type II hypervisor such as Xen or KVM where each virtual 
machine is required to have its own kernel, as opposed to (for instance) 
LXD which provides hypervisor functionality without the necessity for 
a virtual machine to have its own kernel.

An open source Debian-based Linux distribution published by 
Canonical, who offer commercial support.

A simulated physical machine run within an actual physical machine 
that behaves like a separate self-contained physical machine. The 
simulation may be performed by an emulator or (for far better 
performance) by a hypervisor.

Creation of a virtual (as opposed to physical) version of something, 
most often creation of a virtual machine within a physical machine that 
behaves like a virtual machine, or another form of virtual environment 
capable of running software within another environment.

An early (and current) commercial container offering produced by 
SWSoft, which later became part of Parallels. The company producing 
Virtuozzo is now itself called Virtuozzo. Many of the kernel 
components were released as OpenVZ and became part of the Linux 
kernel.

An early form of interprocess isolation available as a set of patches  
to the Linux operating system that were aimed at hosting providers.

An open-source hypervisor that uses a microkernel design, often  
but not exclusively using Linux to manage it.

A form of container available on Solaris.
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